CUVED | Divulgación de la Ciencia, VIII Congreso de Posgrado en Psicología | UNAM (2014)

Tamaño de fuente: 
Diferencias individuales en la eficiencia para seleccionar información relevante e inhibir información irrelevante asociadas a variaciones del gen CNR1
Jesús Antonio Franco Rodríguez, Alejandra Evelyn Ruiz Contreras

Construir: Auditorio Principal
Sala: Lobby
Fecha: 2014-10-21 12:15  – 01:00
Última modificación: 2014-10-13

Resumen


La selección de información relevante y la inhibición de información irrelevante ocurren durante la atención. Se ha reportado que la eficiencia en memoria se asocia con variaciones del gen CNR1 (que sintetiza al receptor CB1 del sistema endocannabinoide). El objetivo de este estudio es describir si las variaciones genéticas en el CNR1 se asocian con una diferente eficiencia en la atención: selección vs. inhibición. Participarán 100 jóvenes que resolverán una tarea de selección de la atención y otra de inhibición de información irrelevante (Stroop). En la primera, los participantes detectarán un estímulo sobresaliente (en color u orientación) entre otros estímulos iguales. Se variará la instrucción al sujeto, en un caso atenderá al color, en otro, a la orientación. Se medirá la respuesta electrofisiológica y conductual cuando, de acuerdo a la instrucción, el estímulo al que debe atender es relevante y se comparará a cuando es irrelevante. En la tarea de Stroop, se compararán las condiciones congruente e incongruente. Se realizarán ANOVAs mixtos: En la tarea de selección, Genotipo X Rasgo Relevante vs. irrelevante X Color vs. Orientación;  en Stroop: Congruente X Incongruente. Las variables dependientes serán respuestas correctas, tiempo de reacción, y amplitud y latencia de N2pc y N400.

Citas


Baluch, F., & Itti, L. (2011). Mechanisms of top-down attention. Trends in Neurosciences, 34(4), 210–224.

Bossong, M. G., van Berckel, B. N. M., Boellaard, R., Zuurman, L., Schuit, R. C., Windhorst, A. D., … Kahn, R. S. (2009). Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology, 34(3), 759–766.

Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. The Journal of Neuroscience, 11, 2383–2402.

Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340–347.

Gazzaley, A., Cooney, J. W., McEvoy, K., Knight, R. T., & D’Esposito, M. (2005). Top-down enhancement and suppression of the magnitude and speed of neural activity. Journal of Cognitive Neuroscience, 17(3), 507–517.

Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1257–1270.

Luck, S. J., & Vecera, S. P. (2002). Attention. En S. Yantis & H. Pashler (Eds.), Steven´s Handbook of Experimental Psychology (pp. 235–286). New York: John Wiley and sons, Inc.

Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in Cognitive Sciences, 4(11), 432–440.

MacLeod, C. M., & MacDonald, P. A. (2000). Interdimensional interference in the Stroop effect : uncovering the cognitive and neural anatomy of attention. Trends in Cognitive Sciences, 4(10), 383–391.

Mao, W., & Wang, Y. (2008). The active inhibition for the processing of visual irrelevant conflict information. International Journal of Psychophysiology : Official Journal of the International Organization of Psychophysiology, 67(1), 47–53.

Pattij, T., Wiskerke, J., & Schoffelmeer, A. N. M. (2008). Cannabinoid modulation of executive functions. European Journal of Pharmacology, 585(2-3), 458–63.

Ruiz-Contreras, A. E., Carrillo-Sánchez, K., Ortega-Mora, I., Barrera-Tlapa, M. A., Román-López, T. V, Rosas-Escobar, C. B., … Prospéro-García, O. (2014). Performance in working memory and attentional control is associated with the rs2180619 SNP in the CNR1 gene. Genes, Brain, and Behavior, 13(1), 173–178.

Stroop, J. R. (1935). Studies of intereference in serial verbal reactions. Journal of Experimental Psychology, (18), 643–662.

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748–751.

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503.

Zanto, T. P., & Gazzaley, A. (2009). Neural suppression of irrelevant information underlies optimal working memory performance. The Journal of Neuroscience, 29(10), 3059–66.